

TOTAL

<u>Year 5/6 - Algebra</u>		
Solving equations		
c + 13 = 22 c 13		
c = 22 - 13 = 9 22		
3f = 36 f f f		
$f = 36 \div 3 = 12$ 36		
2y - 7 = 49		
2y = 49 + 7 = 56 y y		
v = 28		
Using a formula		
<u>Using a formula</u>		
Using a formula Algebraic formulae are rules which describe a mathematical relationship - e.g.		
Using a formula Algebraic formulae are rules which describe a mathematical relationship - e.g. The formula for the area of a triangle		
Using a formula Algebraic formulae are rules which describe a mathematical relationship - e.g.		
Using a formula Algebraic formulae are rules which describe a mathematical relationship - e.g. The formula for the area of a triangle Area = b x h ÷ 2		
Lusing a formula Algebraic formulae are rules which describe a mathematical relationship - e.g. The formula for the area of a triangle Area = b x h ÷ 2 The total cost of a taxi journey (C)		
Lusing a formula Algebraic formulae are rules which describe a mathematical relationship - e.g. The formula for the area of a triangle Area = b x h ÷ 2 The total cost of a taxi journey (C) is £1.50 and 30p for		
Lusing a formula Algebraic formulae are rules which describe a mathematical relationship - e.g. The formula for the area of a triangle Area = b x h ÷ 2 The total cost of a taxi journey (C)		

Algebra and word problems		
Word problems can be shown algebraically.		
I think of a number $\longrightarrow \mathcal{X}$		
I multiply it by 6 $\longrightarrow 6x$		
I then add 4 $\longrightarrow 6x+4$		
My new number is $34 \rightarrow 6\chi + 4 = 34$		
$6x + 4 = 34 \rightarrow 6x = 30 \rightarrow x = 5$		
Alice, Sophie and Matt are siblings.		
Alice is twice as old as Matt. Sophie is 7 years		
older than Matt.		
If Sophie is 12 , how old is Alice ?		
A = 2M If S = 12, M = 5 and		
M = S - 7 A = 2 × 5 = 10		
Lenny and Carl have £120 between them.		

Lenny has three times as much as Carl. How much do they have each?

> L + C = £120 L = 3C 3C + C = £120 = 4C Carl = £30 Lenny = £30 x 3 = £90 @MrH_T77

^{@MrH_T77} Language of Ratio

A ratio shows the relationship between values.

For every 2 **blue flowers** there are 4 **pink** flowers. The ratio of **blue flowers** to pink flowers is 2:4.

OR

For every **blue flower** there are 2 **pink flowers**. The ratio of **blue flowers** to **pink flowers** is **1:2**.

Ratios and fractions

Ratios and fractions are very closely linked.

The ratio of apples to oranges is 6:12 or 1:2. There are 1/2 the number of apples compared to oranges **OR** there are twice as many oranges as apples.

The ratio of apples to the total number of fruit

is 6:18 or 1:3.

1/3 of all the fruit are apples.

Scale factors

When a shape is increased by a scale factor, the length and width are multiplied by the scale factor.

Flapjacks Serves: 10 120 g butter 100 g dark brown soft sugar 4 tablespoons golden syrup 250 g rolled oats 40 g sultanas or raisins

John has 180g of butter. What is the largest number of flapjacks he can make? 120:180 **120g of** 180g of \ ÷60 /

x5

Calculating ratios

A farmer plants some crops in a field. For every **12 carrots**, she plants **5 potatoes**. She plants 60 carrots in total. How many potatoes did she plant? How many vegetables did she

Emily has a packet of sweets. For every 3 red sweets there are 5 purple sweets. If there are 32 sweets in the packet in total, how many of each colour are there? 3:5 12:20 12 red and 32

20purple

If you had 3 red sweets, you'd have 5 purple so 8 sweets in total. 8 goes into 32 4 times so you'd have 3x4 red sweets and 5x4 purple.

Metric vs Imperial				
<u>Volume</u>	<u>Distance</u>	<u>Mass</u>		
millilitres (ml) centilitres (cl) litres (l)	millimetres (mm) centimetres (cm) metres (m)	milligrams (mg) grams (g) kilograms (kg)		
Pints (pt) gallons (gal)	kilometres (km) inches (in) feet (ft) yards (yd)	ounces (oz) pounds (lb) stone (st)		

Miles to Kilometres

5 miles ≈ 8 kilometres

e.g. 45 miles = 9 x 5 miles 9 x 8 kilometres = 72 kilometres 45 miles ≈ 72 kilometres

first co-ordinate represents moving in the x-direction and the second co-ordinate represents moving in the y-direction.

All four quadrants

With four quadrants, co-ordinates can be in a positive and negative direction

Shape Vocabulary		
<u>Term</u>	<u>Definition</u>	
Corner	The point where 2 line meet	has 2
Side	The lines forming the outside of a 2D shape	polyg
Vertex (pl. Vertices)	The point where 2 (or more) lines meet	co rect
Face	The flat 2D surfaces of a 3D shape	
Edge	The part where 2 faces in a 3D shape meet	A
Parallel	Describes two lines which will never meet	
	Year 5/6 - and 3D shapes	
Circles Radius - the distance from the centre of a circle to the outside Circumference	Diameter - the distance from one side of a circle to the other (passing through the centre) - a circle's perimeter	arect
Cor	ne <u>Sphere</u>	' (
a cone has	a circular a sphere is a	
base whic	n joins at perfectly round 3D	
an a	bex shape	

3D Shapes Prisms **Pyramids** faces of a given has a base of a gon - which are given polygon onnected by which joins at a tangular faces vertex. e.g. e.g. A triangular **A** square-based prism: pyramid: Cube Cuboid a cube is a cuboid a cuboid is a where all 6 faces are tangular prism square Cylinder a cylinder has 2 circular faces connected by a curved surface