Compare and order

Remember to START with the largest digits - they have the most value.

$$
\underline{5} 4,353<\underline{6} 0,210
$$

If the digits are the same, move down to the next
$\underline{542,478<542,502}$
Remember to check the column value $99,782<323,251$

Rounding to the nearest...

E.g. Rounding to the nearest 10,000

Value of digits

Millions Thousands Ones 100s 10s 1s 123

$123,456,789=$

One hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine

$$
123,000,000+456,000+789
$$

@MrH_T77

Year 5/6 -
 Place Value

Counting in powers of 10

Counting forwards (without bridging):
e.g. $4 \underline{3}, 534+1,000=4 \underline{4}, 534$

Counting backwards (no exchanging):
e.g. 745, $\underline{6} 43-100=745, \underline{5} 43$

Counting forwards (bridging):

$$
\text { e.g } 5, \underline{59} 3+10=5, \underline{603}
$$

Counting backwards (exchanging):
e.g. $\underline{8}, \underline{1} 42,435-100,000=\underline{7}, \underline{9} 42,435$

Roman Numerals

$$
\begin{aligned}
& I=1 / V=5 / X=10 / L=50 \\
& C=100 / D=500 / M=1,000 \\
& \text { XXVI = } 10+10+5+1=26 \\
& \text { XXIV = } 10+10+(5-1)=24
\end{aligned}
$$

Negative numbers

Square numbers

A square number is the product of 2 of the same number (when a number is multiplied by itself)

$$
2^{2}=2 \times 2=4 \quad 3^{2}=3 \times 3=9
$$

$5^{2}=5 \times 5=25$

Year 5/6Number

Cube numbers

A cube number is the product of three numbers
$\mathbf{2}^{\mathbf{3}}=\mathbf{2} \times \mathbf{2 \times 2 = 4 \times 2 = 8}$

$3^{3}=\mathbf{3} \times 3 \times 3=9 \times 3=27$

Prime numbers

Prime numbers are numbers (larger than 1) with only 2 factors: themselves and 1.

Numbers which are not prime are called
composite numbers.

Prime numbers up to 100

Term	Definition	Other Vocabulary		Term	Definition
Sum / total	The result when two or more numbers are added together			Consecutive	Consecutive numbers are integers which follow in order (e.g. 5, 6, 7, 8, 9)
	Result when a smaller number is taken away	Term	Definition		
Difference	from a larger number	Operations	$\begin{gathered} +(\text { add }),- \text { (subtract), } \\ \text { x (multiply) }) \div \text { (divide) } \end{gathered}$	Descending Order	Numbers which are in descending order decrease in amount/value
Prod	Result when two or more numbers are				
	multiplied together	Integer	A negative or positive whole number	Ascending Order	Numbers which are in ascending order increase in amount
Quotient	Result when one number is divided by another				

Mental +/-

Consider if a mental strategy would be better. 2,000-1,286 could be solved using written subtraction. However, counting up could be quicker.
$1,286+4=1,290$
$1,290+\underline{10}=1,300$
$1, \underline{300}+\underline{700}=\mathbf{2 , 0 0 0}$
$2,000-1,286=700+10+4=714$
@MrH_T77

Year 5/6Addition and Subtraction

Multi-step problems

A milkman has 250 bottles of milk. He collects 160 more during the morning. During his shift, he delivers 375 bottles. How many bottles are remaining? $250+160-375=?=35$

250	160	
375	$?$	

On Monday, Sophie ran 30 km .
On Wednesday, she ran 13 km fewer than Monday. On Friday, she ran 7 km more than Wednesday. How far did she run that week?

Inverse

$3,453+4,649=8,102$
$8,102-4,649=3,453$
$8,102-3,453=4,649$
8,102
4,649
3,453

@MrH_T77
Year 5/6 -
Multiplication and Division

X and \div by $10 / 100 / 1,000$

Each column is $10 x$ bigger than the column before
$x / \div 10$ - move up/down 1 column
$x / \div 100$ - move up/down 2 columns
$x / \div 1,000$ - move up/down 3 columns
$45,000 \div 1,000=45$
$105 \times 100=10,500$

Multiples and factors

Multiple: Can be divided evenly by the number eg. 8 / 32 / 64 / 800 are all multiples of 8

Factor: Can be multiplied to create the number
e.g. 1 / 2 / 3 / 4 / 6 / 12 are factors of 12

Mental x / \div

$300 \times 4=3 \times 4 \times 100=12 \times 100=\underline{1,200}$

$$
\underline{720} \div 9=72 \div 9 \times 10=8 \times 10=\underline{\mathbf{8 0}}
$$

$\underline{24 \times 19}=24 \times 20-24=480-24=\underline{456}$

Written Division

How many 8 s in 8 ? $8 \longdiv { 8 , 1 9 2 } \quad \underline { 8 } \div 8 = 1$

$$
\begin{array}{cl}
1,0 & \text { How many } 8 \mathrm{~s} \text { in } 1 ? \\
8 \longdiv { 8 , 1 ^ { 1 } 9 2 } & \underline{1} \div 8=0 \mathrm{r} 1
\end{array}
$$

$$
\begin{aligned}
1,02 & \text { How many } 8 \mathrm{~s} \text { in } 19 ? \\
8 \longdiv { 8 , 1 ^ { 1 } 9 ^ { 3 } 2 } & \text { 19 } \div 8=2 \mathrm{r} 3 \\
1,024 & \text { How many } 8 \mathrm{~s} \text { in } 32 ? \\
8 \boxed{8,1^{1} 9^{3} \underline{2}} & \text { 32} \div 8=4
\end{aligned}
$$

Inverse

$5,435 \times 4=21,740$
$21,740 \div 4=5,435$
$21,740 \div 5,435=4$ 21,740

5,435	5,435	5,435	5,435

Order of Operation

B - Brackets
I - Indices (squares, cubes)
D/M - Division / multiplication A/S - Addition / Subtraction
$(3+7) \times 3=30$
$3+7 \times 3=24$

Bar and column charts

How Y4 travel to school

The information in a bar chart is read across. They are used to compare different data. In the above example, we can see that more children in Y4 walk to school

Line graphs

Line graph usually show us changes over time. They require us to read along the x

> and y axes.

For example, the graph above shows a temperature of around $-1.5^{\circ} \mathrm{C}$ at $6 \mathrm{pm}, 4^{\circ} \mathrm{C}$ at 2 pm and $1^{\circ} \mathrm{C}$ at $3: 30 \mathrm{pm}$.
${ }^{\text {enw }}$ ITV \quad Year 5/6Statistics

Pictograms In pictograms, an image is given a certain value.
= 20 house points
Team \quad Number of house points

Sycamore	$\square \square \square \square \square$
Oak	$\square \square \square \square$
Beech	$\square \square \square \square$
Ash	$\square \square \square \square$

Sycamore $=4 \times 20+(20 \div 2)=80+10=90$
Oak $=3 \times 20+(20 \div 2)=60+10=70$
Beech $=4 \times 20+(20 \div 4)=80+5=85$
Ash $=5 \times 20=100$

Two-way tables

	Boys	Girls	TOTAL
Dogs	87	44	131
Cats	38		114
TOTAL	125	120	245

The table above shows the number of dogs and cats owned by girls and boys

Perimeter

The perimeter of a shape or space is the distance around the outside.

Area

The area of a shape is the amount of 2D space it takes up

Perimeter
Area

Area of rectangle

Area of rectangle $=b \times h$

Area $=3 \mathrm{~cm} \times 6 \mathrm{~cm}=18 \mathrm{~cm}^{2}$

Year 5/6 Perimeter, Area and Volume

Area of triangle

A triangle is half the size of a rectangle with the same base and height.
Therefore, the area is half the size.

Volume of cuboids

The volume of a cuboid is its "3D space"
It can be counted as cubes or by using
Volume of cuboid = base x height x depth

Volume $=3 \mathrm{~cm} \times 4 \mathrm{~cm} \times 2 \mathrm{~cm}=$ $12 \mathrm{~cm}^{2} \times 2 \mathrm{~cm}=24 \mathrm{~cm}^{3}$

Finding missing sides

Using the properties of shapes, we can find the length of missing sides.

Area of compound shapes

To find the area of compound shapes, simply split them into shapes you can find the area of.

Area of Parallelogram

A parallelogram has the same area as a rectangle with the same base and height

$$
\text { Area of parallelogram }=b \times h
$$

Compare and order fractions

If the denominators of our fractions are the same, they are easy to compare.

Add and subtract fractions

If the denominators of our fractions are the same, we just add the numerators.

$\frac{1}{4}+\frac{2}{3}=\frac{11}{12}$

$\frac{5}{6}-\frac{1}{4}=$
$\frac{10}{12}-\frac{3}{12}=\frac{7}{12}$

Equivalent fractions

As long as we multiply or divide the numerator and denominator by the same number, our fraction will be equivalent.

@MrH_T77
Year 5/6 Fractions (1)

Dividing fractions

Dividing can be thought of as grouping (if numerator divisible by integer) or splitting.

Improper and mixed numbers

Fractions which are bigger than 1.

Multiplying fractions

If multiplying by an integer, think of it as repeated addition.

$$
\begin{array}{r}
\frac{3}{5} \times 3=\frac{3}{5}+\frac{3}{5}+\frac{3}{5}=\frac{9}{5}=1 \frac{4}{5} \\
+\square+\square=
\end{array}
$$

If multiplying fractions together, you multiply the numerators together and multiply the denominators together.

$$
\begin{gathered}
\frac{2}{3} \times \frac{3}{4}=\frac{2 \times 3}{3 \times 4}=\frac{6}{12}=\frac{1}{2} \\
\times \square=\square=\square
\end{gathered}
$$

Find fractions of amounts

When finding fractions of amounts, remember the denominator is how many equal parts something has been split into and the numerator is how many parts you have

Adding mixed numbers

$=3 \frac{31}{20}=4 \frac{11}{20}$

Multiplying mixed number

Remember to multiply the integer and the fraction．

$$
4 \frac{5}{7} \times 3=4 \times 3+\frac{5}{7} \times 3
$$

日
日
日
$4 \frac{5}{7} \times 3=12+\frac{15}{7}$
$4 \frac{5}{7} \times 3=12+2 \frac{1}{7}$
$4 \frac{5}{7} \times 3=14 \frac{1}{7}$

Year 5／6－Fractions（2）

Adding three fractions

Convert them all into like fractions

$$
\frac{1}{3}+\frac{3}{5}+\frac{1}{2}
$$

$$
\frac{10}{30}+\frac{18}{30}+\frac{15}{30}=\frac{43}{30}=1 \frac{13}{30}
$$

Subtracting mixed numbers

$$
=1 \frac{15}{15}-\frac{4}{15}=1 \frac{11}{15}
$$

$$
\square \quad \# \quad \square
$$

Finding Wholes

Sam spent two thirds of his money．If he＇d spent $£ 60$ ，how much did he start off with？

If two thirds $=£ 60$ ，then one third $=£ 30$ ．
If one third $=£ 30$ ，then three thirds （or the whole）$=£ 90$

Decimal place value

Ones (1s)	Tenths (0.1s) $\frac{1}{10}$	$\begin{aligned} & \text { Hundredths } \\ & \begin{array}{c} (0.01 \mathrm{~s}) \\ \frac{1}{100} \end{array} \end{aligned}$	Thousandths $\begin{aligned} & (0.001 s) \\ & \frac{1}{1000} \end{aligned}$
$\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}$	(1)	$\begin{aligned} & (000) \quad(0.00) \\ & (0.0) \quad(000) \\ & \hline(0.0) \end{aligned}$	${ }^{(000)} \quad{ }^{(0000} \quad \text { (000) }$
5	2	6	4

$$
5.264=5+0.2+0.06+0.004
$$

Percentages of amounts

$$
\begin{array}{ll}
50 \%=\frac{1}{2}=\div 2 & 10 \%=\frac{1}{10}=\div 10 \\
25 \%=\frac{1}{4}=\div 4 & 1 \%=\frac{1}{100}=\div 100
\end{array}
$$

Using these rules we can make any percentage, e.g.

$$
5 \%=10 \% \div 2 \text { or } 1 \% \times 5
$$

$40 \%=10 \% \times 4$ or $50 \%-10 \%-10 \%$
35% of $240=72+12=84$
10% of $240=24$
30% of $240=72 \times 3 / 5 \%$ of $240=12$
An easier way? (Particularly for tricky percentages) We know percentages are easy to turn to /100
35% of $240=35 / 100$ of 240

$$
240 \times 35=8,400 \quad 8,400 \div 100=84
$$

35% of $240=84$
${ }^{\text {@MrHTIT] }}$ Year 5/6-Decimals and Percentages

Rounding decimals

e.g. Rounded to the nearest whole number
3.715

Ordering decimals

START with the digits
with the most value.
If the digits are the same move to the next.

Remember to check
the column value
Multiplying
Decimals
$£ 5.53$
$\quad \begin{array}{r}6 \\ £ 33.18 \\ 8\end{array}$
Decimal point stays where it is
$\underline{5} .53<\underline{6} .09$
$\underline{7 .} 781>7 . \underline{769}$
$\underline{3} . \underline{7}>\underline{3} . \underline{3} 02$
Dividing
Decimals
£0.63
$6 £ 3.78$

Decimal point stays where it is

Percentages

Percent means per $\mathbf{1 0 0}$ or $\mathbf{1 0 0}$

Decimals and fractions

$$
\frac{1}{10}=0.1 \quad \frac{1}{100}=0.01 \quad \frac{1}{1000}=0.001
$$

$0.35=\frac{3}{10}+\frac{5}{100}=\frac{35}{100}$
$0.741=\frac{7}{10}+\frac{4}{100}+\frac{1}{1000}=\frac{741}{1000}$
$\frac{100}{100}=100 \% \quad \frac{1}{100}=1 \% \quad \frac{37}{100}=37 \%$
Common fraction, decimal, \% equivalencies

$$
\begin{array}{ll}
\frac{1}{10}=0.1=10 \% & \frac{3}{4}=0.75=75 \% \\
\frac{1}{2}=0.5=50 \% & \frac{1}{5}=0.2=20 \% \\
\frac{1}{4}=0.25=25 \% & \frac{1}{8}=0.125=12.5 \%
\end{array}
$$

Finding an algebraic rule

$n \rightarrow-7 \rightarrow x^{3} \rightarrow 3(n-7)$

Using an algebraic rule

b+12
if $b=7, b+12=19$ if $b=3, b+12=15$
if $n=7$ and $m=3, n+m=10$
n+m if $n=9$ and $m=-7, n+m=2$
$3 t+8$ if $t=3,3 t+8=3 \times 3+8=17$ if $t=7,3 t+8=3 \times 7+8=28$

Finding possible values

$a+b=6$

$a=4, b=2$
$3 c-7=y$
$\mathrm{a}=3, \mathrm{~b}=3$
$c=2, y=-1$
$a=1, b=5 \quad c=10, y=23$
$a=-3, b=9 \quad c=100, y=293$

Year 5/6 - Algebra

Solving equations

$3 f=36$
$\mathrm{f}=36 \div 3=12$

$2 y-7=49$

$2 y=49+7=56 \quad$| y |
| :--- |

$$
y=28
$$

Using a formula

Algebraic formulae are rules which
describe a mathematical relationship - e.g.

The formula for the area of a triangle

$$
\text { Area }=b \times h \div 2
$$

The total cost of a taxi journey (C) is $£ 1.50$ and 30 p for the number of miles travelled (m).

$$
C=£ 1.50+£ 0.30 \times \mathrm{m}
$$

Algebra and word problems

Word problems can be shown algebraically.
I think of a number $\longrightarrow \mathcal{X}$
I multiply it by 6

I then add 4

$$
\longrightarrow 6 x+4
$$

My new number is $34 \rightarrow 6 x+4=34$
$6 x+4=34 \rightarrow 6 x=30 \rightarrow x=5$
Alice, Sophie and Matt are siblings.
Alice is twice as old as Matt. Sophie is 7 years older than Matt.
If Sophie is 12, how old is Alice?
$A=2 M \quad$ If $S=12, M=5$ and
$\mathrm{M}=\mathrm{S}-7$

$$
A=2 \times 5=10
$$

Lenny and Carl have $£ 120$ between them. Lenny has three times as much as Carl. How much do they have each?

$$
\begin{gathered}
L+C=£ 120 \\
L=3 C
\end{gathered}
$$

$$
3 C+C=£ 120=4 C
$$

Carl $=£ 30$
Lenny $=£ 30 \times 3=£ 90$

@MrH_T77 Language of Ratio

A ratio shows the relationship between values.

For every 2 blue flowers there are 4 pink flowers. The ratio of blue flowers to pink flowers is 2:4.

OR
For every blue flower there are 2 pink flowers. The ratio of blue flowers to pink flowers is 1:2.

Ratios and fractions

Ratios and fractions are very closely linked.

The ratio of apples to oranges is 6:12 or 1:2. There are $1 / 2$ the number of apples compared to oranges OR there are twice as many oranges as apples.
The ratio of apples to the total number of fruit is 6:18 or 1:3.
$1 / 3$ of all the fruit are apples.

Year 5/6-Ratio

Scale factors

When a shape is increased by a scale factor, the length and width are multiplied by the scale factor.

John has 180 g of butter. What is the largest number of flapjacks he can make? 120:180

Calculating ratios

A farmer plants some crops in a field. For every 12 carrots, she plants 5 potatoes. She plants 60 carrots in total. How many potatoes did she plant? How many vegetables did she
plant in total?

Emily has a packet of sweets. For every 3 red sweets there are 5 purple sweets. If there are 32 sweets in the packet in total, how many of each colour are there? 3:5

8

If you had 3 red sweets, you'd have 5 purple so 8 sweets in total. 8 goes into 324 times so you'd have 3×4 red sweets and 5×4 purple.

Metric vs Imperial		
Volume	Distance	Mass
millilitres (ml) centilitres (cl) litres (I)	millimetres (mm) centimetres (cm) metres (m) kilometres (km)	$\begin{aligned} & \text { milligrams (mg) } \\ & \text { grams (g) } \\ & \text { kilograms (kg) } \end{aligned}$
Pints (pt) gallons (gal)		ounces (oz)
	inches (in) feet (ft) yards (yd)	pounds (lb) stone (st)

Time Conversion

seconds	60 seconds $=1$ minute
minutes	60 minutes $=1$ hour
hours	24 hours $=1$ day
days	7 days $=1$ week
weeks	$28 / 29 / 30 / 31$ days $=1$ month
months	~ 365 days $=1$ year
years	~ 52 weeks $=1$ year
	12 months $=1$ year

Miles to Kilometres

5 miles ≈ 8 kilometres
e.g.

45 miles $=9 \times 5$ miles
9×8 kilometres $=72$ kilometres 45 miles ≈ 72 kilometres

emritil $^{\text {Year 5/6- }}$

 Converting Units
Calculating with measures

A parcel weighs 439 grams. How many kilograms would 27 parcels weigh?
$439 \mathrm{~g} \times 27=11,853 \mathrm{~g}=11.853 \mathrm{~kg}$

Dominic, Emma and Annabelle jumped a total of
34.77 m in a long jump competition.

Emma jumped exactly 200 cm further than Dominic. Annabelle jumped exactly $2,000 \mathrm{~mm}$ further than Emma.

What distance did they all jump?

Converting metric units

Volume

e.g. $3,500 \mathrm{ml}=3.5 \mid$

$1 \mathrm{~cm}=10 \mathrm{~mm} ; 1 \mathrm{~m}=100 \mathrm{~cm} ; 1 \mathrm{~km}=1,000 \mathrm{~m}$
e.g. $653 \mathrm{~cm}=6.53 \mathrm{~m}$

$1 \mathrm{~g}=1,000 \mathrm{mg} ; 1 \mathrm{~kg}=1,000 \mathrm{~g} ; 1$ tonne $=1,000 \mathrm{~kg}$
All metric units follow the pattern below; however, not all terms are regularly used (e.g. we don't regularly use cg or kl)

Plotting in the first quadrant

 $(6,8)$

When plotting co-ordinates, the first co-ordinate represents moving in the x-direction and the second co-ordinate represents moving in the y-direction.

All four quadrants

With four quadrants, co-ordinates can be in a positive and negative direction

Year 5/6-
Position and direction

Reflections

Reflections are where a shape or co-ordinates are mirrored across a line.

As you can see in the above example, the co-ordinates closest to the line of reflection
in shape A are still the closest after being reflected.

$$
\begin{aligned}
& (4,3) \longrightarrow(6,3) \quad /(4,8) \longrightarrow(6,8) \\
& (1,3) \longrightarrow(9,3) \quad / \quad(1,8) \longrightarrow(9,8)
\end{aligned}
$$

Properties of shapes

D will have the same
y co-ordinate as \mathbf{C}.

$$
\begin{aligned}
& B=(7,8) \quad \mathrm{D}=(7,-3) \\
& \mathrm{C}=(-1,-3)
\end{aligned}
$$

Translation

Translations are where a shape or co-ordinates are move across the x-axis and

When measuring angles, place the centre of the protractor on the vertex - with one line meeting a zero. Follow around from the 0 until you reach the next line to read the angle.

Angles in quadrilaterals

The interior angles in a quadrilateral always

Rectangles
(including squares)
have four 90° angles.

Parallelograms
(including rectangles and rhombuses) the opposite angles are
 Angles

Angles on a straight line

All the angles around a point will add up to 360°.

Angles on a straight line

All the angles along a straight line will

Vertically opposite angles

Opposite angles of two straight intersecting lines will always be equal.

Angles in a triangle

The interior angles in a triangle always

Isosceles triangle Equilateral triangle

Has two sides of
equal length and
two equal angles. Has three sides of equal length and three equal angles.

Regular shapes

Regular shapes have sides with the same lengths and all equal angles. Interestingly, for each extra side on a polygon, the sum of the angles is 180° more.

Shape (no. of sides)	Sum of angles	Single angle in regular shape
Triangle (3)	180°	$180^{\circ} \div 3=\underline{60^{\circ}}$
Quadrilateral (4)	360°	$360^{\circ} \div 4=\underline{90^{\circ}}$
Pentagon (5)	540°	$540^{\circ} \div 5=\underline{108^{\circ}}$
Hexagon (6)	720°	$720^{\circ} \div 6=\underline{120^{\circ}}$

Quadrilaterals

Any 4-sided polygon is called a quadrilateral.
$\xrightarrow{\underline{\text { Trapezium }}}$

Rectangle
A type of parallelogram

- all four interior angles are 90°

Rhombus

A type of parallelogram - all four sides are equal in length

Square

A regular quadrilateral
A type of rectangle and rhombus

- opposite sides are equal in length
- four 90° angles

Shape Vocabulary	
Term	Definition
Corner	The point where 2 line meet
Side	The lines forming the outside of a 2D shape
Vertex ($p l$. Vertices)	The point where 2 (or more) lines meet
Face	The flat 2D surfaces of a 3 D shape
Edge	The part where 2 faces in a 3D shape meet
Parallel	Describes two lines which will never meet
@MrH_T77	
2D and 3D shapes	

3D Shapes

Prisms
Pyramids
has 2 faces of a given polygon- which are connected by rectangular faces

Cuboid
a cuboid is a rectangular prism

has a base of a given polygon which joins at a vertex.
e.g. A square-based pyramid:

Cube
a cube is a cuboid where all 6 faces are
square

Cylinder
a cylinder has 2 circular faces connected by a curved surface

